metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[4-Chloro-N'-(3-methoxy-2-oxidobenzylidene)benzohydrazidato]dimethyltin(IV)

Jichun Cui, Yanling Qiao and Handong Yin*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 15 November 2008; accepted 3 December 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.080; data-to-parameter ratio = 14.1.

In the title molecule, $[Sn(CH_3)_2(C_{15}H_{11}ClN_2O_3)]$, the two benzene rings form a dihedral angle of $6.37 (2)^\circ$. The Sn atom is coordinated by one N [Sn-N = 2.187 (3) Å], two O [Sn-O = 2.123 (3) and 2.174 (3) Å] and two C [Sn-C = 2.096 (4) and 2.101 (4) Å] atoms in a distorted trigonal-bipyramidal geometry. The crystal packing exhibits weak intermolecular C-H···O hydrogen bonds, which link the molecules into centrosymmetric dimers with an Sn...Sn separation of 4.330 (6) Å, and $\pi - \pi$ interactions [centroid–centroid distance] of 3.690 (5) Å between the benzene rings of neighbouring molecules].

Related literature

For a related crystal structure, see Hong et al. (2006).

Experimental

Crystal data

$[Sn(CH_3)_2(C_{15}H_{11}ClN_2O_3)]$	V = 3556.0 (7) Å ³
$M_r = 451.47$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 30.015 (3) Å	$\mu = 1.60 \text{ mm}^{-1}$
b = 9.5039 (10) Å	T = 298 (2) K
c = 13.5615 (18) Å	$0.50 \times 0.20 \times 0.08 \text{ mm}$
$\beta = 113.189 \ (2)^{\circ}$	

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.501, \ T_{\max} = 0.882$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	220 parameters
$wR(F^2) = 0.080$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
3113 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

8568 measured reflections

 $R_{\rm int} = 0.061$

3113 independent reflections

2392 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$ $D \cdots A$ $D - H \cdot \cdot \cdot A$ $C15-H15B\cdots O1^{i}$ 0.96 2.53 3.290 (6) 136

Symmetry code: (i) -x, -y + 2, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Shandong Provincial Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2482).

References

Hong, M., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1504-m1505. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2009). E65, m36 [doi:10.1107/S1600536808040786]

[4-Chloro-N'-(3-methoxy-2-oxidobenzylidene)benzohydrazidato]dimethyltin(IV)

J. Cui, Y. Qiao and H. Yin

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1. The Sn atom has distorted trigonal-bipyramidal coordination geometry, with atoms O1 and O2 in axial positions $[O1-Sn1-O2 = 153.92 (11)^{\circ}]$ and the atoms C16, C17 and N2 in equatorial positions. The sum of the equatorial angles C16-Sn1-C17, C16-Sn1-N2 and C17-Sn-N2 is 359.4 (1) °, indicating approximate coplanarity for these atoms. The Sn1-N2 bond length is 2.187 (3) Å close to the sum of the non-polar covalent radii 2.15 Å, indicating a strong Sn-N interaction. The Sn-O coordinating bond lengths are close to those in the reported compound $[Sn(C_6H_5)_2(C_{14}H_{10}N_2O_3)].C_2H_6O$ (Hong *et al.*, 2006). The crystal packing exhibits weak intermolecular C-H···O hydrogen bonds (Table 2), which link the molecules into centrosymmetric dimers with Sn···Sn separation of 4.330 (6) Å, and π - π interactions proved by short distance of 3.690 (5) between the centroids of benzene rings from the neighbouring molecules (Table 1).

Experimental

The reaction was carried out under nitrogen atmosphere. *o*-vanillin 4-chlorobenzhydrazone(1 mmol) and sodium ethoxide (1.2 mmol) were added to the solution of benzene(30 ml) in a Schlenk flask and stirred for 0.5 h. Dimethyltin dichloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 4 h at 313 K.The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/methanol (1:1). Analysis calculated (75%) for $C_{17}H_{17}ClN_2O_3Sn$ (Mr = 451.47): C, 45.22; H, 3.80; N, 6.20, found: C, 45.09; H, 3.76; N, 6.35.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with, with aromatic C—H distances of 0.93 Å, methyl C—H distances of 0.96 Å. The $U_{iso}(H)$ values were set at $1.5U_{iso}(C)$ for the methyl H atoms, and at $1.2U_{iso}(C)$ for the other H atoms.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

[4-Chloro-N'-(3-methoxy-2- oxidobenzylidene)benzohydrazidato]dimethyltin(IV)

Crystal data [Sn(CH₃)₂(C₁₅H₁₁ClN₂O₃)]

 $F_{000} = 1792$

$M_r = 451.47$	$D_{\rm x} = 1.687 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 30.015 (3) Å	Cell parameters from 4052 reflections
b = 9.5039 (10) Å	$\theta = 2.3 - 28.1^{\circ}$
<i>c</i> = 13.5615 (18) Å	$\mu = 1.60 \text{ mm}^{-1}$
$\beta = 113.189 \ (2)^{\circ}$	T = 298 (2) K
$V = 3556.0 (7) \text{ Å}^3$	Block, orange
Z = 8	$0.50\times0.20\times0.08~mm$

Data collection

Siemens SMART CCD area-detector diffractometer	3113 independent reflections
Radiation source: fine-focus sealed tube	2392 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.061$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -35 \rightarrow 35$
$T_{\min} = 0.501, \ T_{\max} = 0.882$	$k = -10 \rightarrow 11$
8568 measured reflections	$l = -8 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.1164P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\text{max}} = 0.001$
3113 reflections	$\Delta \rho_{max} = 0.66 \text{ e } \text{\AA}^{-3}$
220 parameters	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Sn1	0.032667 (8)	0.79772 (3)	0.059696 (18)	0.03884 (12)
Cl1	0.23989 (4)	0.12286 (15)	0.38025 (11)	0.0824 (4)
N1	0.03655 (10)	0.5011 (3)	0.1544 (2)	0.0386 (7)
N2	0.00348 (9)	0.6097 (3)	0.1058 (2)	0.0343 (7)
01	0.08954 (9)	0.6394 (3)	0.1128 (2)	0.0516 (7)
O2	-0.04042 (8)	0.8667 (3)	0.0035 (2)	0.0481 (7)
O3	-0.11949 (8)	1.0208 (3)	-0.0695 (2)	0.0593 (8)

C1	0.07925 (12)	0.5289 (4)	0.1536 (3)	0.0375 (9)
C2	0.11826 (12)	0.4249 (4)	0.2063 (3)	0.0373 (9)
C3	0.11002 (14)	0.3030 (4)	0.2523 (3)	0.0452 (10)
H3	0.0788	0.2837	0.2472	0.054*
C4	0.14663 (14)	0.2095 (4)	0.3054 (3)	0.0484 (10)
H4	0.1405	0.1282	0.3361	0.058*
C5	0.19244 (14)	0.2392 (5)	0.3119 (3)	0.0515 (11)
C6	0.20167 (14)	0.3569 (5)	0.2656 (4)	0.0706 (14)
H6	0.2328	0.3747	0.2696	0.085*
C7	0.16426 (14)	0.4496 (5)	0.2123 (4)	0.0603 (12)
H7	0.1704	0.5297	0.1803	0.072*
C8	-0.03937 (12)	0.5902 (4)	0.1040 (3)	0.0394 (9)
H8	-0.0445	0.5060	0.1330	0.047*
C9	-0.07999 (13)	0.6841 (4)	0.0622 (3)	0.0392 (9)
C10	-0.07884 (13)	0.8150 (4)	0.0152 (3)	0.0396 (9)
C11	-0.12244 (12)	0.8960 (4)	-0.0225 (3)	0.0446 (10)
C12	-0.16337 (14)	0.8486 (5)	-0.0114 (3)	0.0570 (12)
H12	-0.1911	0.9040	-0.0351	0.068*
C13	-0.16372 (15)	0.7186 (5)	0.0348 (4)	0.0655 (14)
H13	-0.1917	0.6872	0.0417	0.079*
C14	-0.12297 (13)	0.6366 (5)	0.0703 (3)	0.0529 (11)
H14	-0.1236	0.5488	0.1001	0.063*
C15	-0.16273 (14)	1.1007 (5)	-0.1172 (4)	0.0785 (16)
H15A	-0.1874	1.0434	-0.1683	0.118*
H15B	-0.1566	1.1810	-0.1529	0.118*
H15C	-0.1733	1.1315	-0.0626	0.118*
C16	0.03486 (14)	0.8041 (4)	-0.0928 (3)	0.0450 (10)
H16A	0.0310	0.8996	-0.1180	0.068*
H16B	0.0091	0.7475	-0.1416	0.068*
H16C	0.0654	0.7683	-0.0887	0.068*
C17	0.05918 (14)	0.9110 (4)	0.2044 (3)	0.0508 (11)
H17A	0.0896	0.8717	0.2515	0.076*
H17B	0.0363	0.9053	0.2378	0.076*
H17C	0.0637	1.0077	0.1901	0.076*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.03741 (16)	0.0408 (2)	0.04022 (17)	0.00259 (12)	0.01728 (12)	0.00166 (12)
Cl1	0.0532 (6)	0.0705 (9)	0.1054 (10)	0.0202 (6)	0.0120 (7)	0.0138 (8)
N1	0.0381 (16)	0.0376 (19)	0.0420 (17)	0.0032 (14)	0.0179 (13)	0.0047 (15)
N2	0.0349 (15)	0.0350 (18)	0.0347 (15)	-0.0004 (14)	0.0156 (13)	-0.0008 (14)
O1	0.0453 (15)	0.0475 (18)	0.0701 (18)	0.0051 (13)	0.0315 (14)	0.0148 (16)
O2	0.0381 (13)	0.0485 (18)	0.0603 (16)	0.0043 (12)	0.0222 (13)	0.0120 (14)
O3	0.0347 (14)	0.0504 (19)	0.086 (2)	0.0068 (13)	0.0167 (14)	0.0133 (17)
C1	0.041 (2)	0.040 (2)	0.0346 (19)	0.0022 (17)	0.0176 (16)	-0.0034 (17)
C2	0.0383 (19)	0.036 (2)	0.040 (2)	-0.0003 (16)	0.0178 (16)	-0.0031 (17)
C3	0.042 (2)	0.045 (3)	0.048 (2)	-0.0001 (19)	0.0167 (18)	-0.002 (2)

supplementary materials

C4	0.048 (2)	0.041 (3)	0.054 (2)	0.0014 (19)	0.0167 (19)	0.008 (2)
C5	0.043 (2)	0.048 (3)	0.055 (2)	0.008 (2)	0.0104 (19)	-0.002 (2)
C6	0.033 (2)	0.073 (3)	0.101 (4)	0.002 (2)	0.022 (2)	0.019 (3)
C7	0.047 (2)	0.055 (3)	0.082 (3)	0.001 (2)	0.029 (2)	0.018 (3)
C8	0.045 (2)	0.041 (2)	0.0353 (19)	-0.0024 (18)	0.0191 (16)	-0.0051 (17)
С9	0.0394 (19)	0.048 (3)	0.0317 (18)	0.0020 (18)	0.0152 (16)	-0.0009 (17)
C10	0.0358 (19)	0.047 (3)	0.0346 (19)	-0.0015 (17)	0.0128 (16)	-0.0051 (18)
C11	0.039 (2)	0.045 (3)	0.047 (2)	0.0023 (19)	0.0141 (17)	-0.001 (2)
C12	0.038 (2)	0.063 (3)	0.071 (3)	0.006 (2)	0.022 (2)	0.011 (3)
C13	0.039 (2)	0.087 (4)	0.076 (3)	0.002 (2)	0.029 (2)	0.019 (3)
C14	0.042 (2)	0.064 (3)	0.056 (2)	-0.001 (2)	0.0234 (19)	0.011 (2)
C15	0.041 (2)	0.067 (3)	0.113 (4)	0.011 (2)	0.014 (3)	0.023 (3)
C16	0.053 (2)	0.042 (2)	0.045 (2)	0.0016 (19)	0.0245 (18)	0.0022 (19)
C17	0.056 (2)	0.047 (3)	0.044 (2)	-0.005 (2)	0.0149 (19)	-0.002 (2)

Geometric parameters (Å, °)

Sn1—C16	2.096 (4)	С6—Н6	0.9300
Sn1—C17	2.101 (4)	С7—Н7	0.9300
Sn1—O2	2.123 (2)	C8—C9	1.436 (5)
Sn1—O1	2.174 (3)	С8—Н8	0.9300
Sn1—N2	2.187 (3)	C9—C10	1.404 (5)
Cl1—C5	1.752 (4)	C9—C14	1.412 (5)
N1—C1	1.313 (4)	C10—C11	1.428 (5)
N1—N2	1.403 (4)	C11—C12	1.371 (5)
N2—C8	1.290 (4)	C12—C13	1.387 (6)
O1—C1	1.281 (4)	C12—H12	0.9300
O2—C10	1.319 (4)	C13—C14	1.368 (6)
O3—C11	1.365 (5)	С13—Н13	0.9300
O3—C15	1.421 (5)	C14—H14	0.9300
C1—C2	1.483 (5)	C15—H15A	0.9600
C2—C7	1.371 (5)	C15—H15B	0.9600
C2—C3	1.383 (5)	C15—H15C	0.9600
C3—C4	1.376 (5)	C16—H16A	0.9600
С3—Н3	0.9300	C16—H16B	0.9600
C4—C5	1.372 (6)	C16—H16C	0.9600
C4—H4	0.9300	C17—H17A	0.9600
C5—C6	1.364 (6)	С17—Н17В	0.9600
C6—C7	1.386 (6)	С17—Н17С	0.9600
Sn1…Sn1 ⁱ	4.3302 (6)	Cg1…Cg2 ⁱⁱ	3.690 (5)
C16—Sn1—C17	139.41 (15)	C14—C13—H13	119.9
C16—Sn1—O2	93.81 (13)	С12—С13—Н13	119.9
C17—Sn1—O2	97.74 (13)	C13—C14—C9	120.5 (4)
C16—Sn1—O1	91.21 (13)	C13—C14—H14	119.7
C17—Sn1—O1	94.93 (13)	С9—С14—Н14	119.7
O2—Sn1—O1	153.92 (11)	O3—C15—H15A	109.5
C16—Sn1—N2	118.54 (12)	O3—C15—H15B	109.5
C17—Sn1—N2	101.45 (14)	H15A—C15—H15B	109.5

O2—Sn1—N2	83.18 (10)	O3—C15—H15C	109.5
O1—Sn1—N2	71.99 (10)	H15A—C15—H15C	109.5
C16—Sn1—Sn1 ⁱ	77.92 (10)	H15B—C15—H15C	109.5
C17—Sn1—Sn1 ⁱ	81.00 (11)	Sn1—C16—H16A	109.5
O2—Sn1—Sn1 ⁱ	48.68 (7)	Sn1—C16—H16B	109.5
O1—Sn1—Sn1 ⁱ	156.79 (7)	H16A—C16—H16B	109.5
N2—Sn1—Sn1 ⁱ	131.22 (7)	Sn1—C16—H16C	109.5
C1—N1—N2	111.2 (3)	H16A—C16—H16C	109.5
C8—N2—N1	114.8 (3)	H16B—C16—H16C	109.5
C8—N2—Sn1	128.4 (3)	Sn1—C17—H17A	109.5
N1—N2—Sn1	116.5 (2)	Sn1—C17—H17B	109.5
C1—O1—Sn1	114.8 (2)	H17A—C17—H17B	109.5
C10—O2—Sn1	132.1 (2)	Sn1—C17—H17C	109.5
C11—O3—C15	117.4 (3)	Н17А—С17—Н17С	109.5
O1—C1—N1	124.8 (3)	H17B—C17—H17C	109.5
01—C1—C2	118.4 (3)	C3—CG1—C5	119.9 (3)
N1—C1—C2	116.7 (3)	C3—CG1—C7	119.8 (2)
C7—C2—C3	118.1 (4)	C5—CG1—C7	120.3 (2)
C7—C2—C1	120.0 (4)	C3—CG1—C6	179.4 (3)
C3—C2—C1	121.9 (3)	C5—CG1—C6	59.6 (3)
C2—C3—C4	121.9 (4)	C7—CG1—C6	60.6 (2)
С2—С3—Н3	119.0	C3—CG1—C4	60.1 (2)
С4—С3—Н3	119.0	C5—CG1—C4	59.8 (2)
C5—C4—C3	118.3 (4)	C7—CG1—C4	179.6 (3)
С5—С4—Н4	120.8	C6—CG1—C4	119.4 (3)
C3—C4—H4	120.8	C3—CG1—C2	60.4 (2)
C6—C5—C4	121.3 (4)	C5—CG1—C2	179.2 (2)
C6—C5—C11	119.4 (3)	C7—CG1—C2	59.5 (2)
C4—C5—Cl1	119.3 (4)	C6—CG1—C2	120.1 (3)
C5—C6—C7	119.5 (4)	C4—CG1—C2	120.5 (2)
С5—С6—Н6	120.3	C3—CG1—CG2 ⁱⁱ	91.56 (16)
С7—С6—Н6	120.3	C5—CG1—CG2 ⁱⁱ	102.81 (18)
C2—C7—C6	120.8 (4)	C7—CG1—CG2 ⁱⁱ	75.46 (19)
С2—С7—Н7	119.6	C6—CG1—CG2 ⁱⁱ	88.2 (2)
С6—С7—Н7	119.6	C4—CG1—CG2 ⁱⁱ	104.11 (17)
N2	127.1 (4)	C2—CG1—CG2 ⁱⁱ	77.95 (14)
N2—C8—H8	116.4	C11—CG2—C12	59.4 (2)
С9—С8—Н8	116.4	C11—CG2—C14	178.1 (2)
C10-C9-C14	120.4 (3)	C12—CG2—C14	118.9 (2)
C10—C9—C8	124.2 (4)	C11—CG2—C13	119.3 (2)
C14—C9—C8	115.5 (4)	C12—CG2—C13	59.9 (2)
O2—C10—C9	124.3 (3)	C14—CG2—C13	59.0 (2)
O2-C10-C11	118.5 (4)	C11—CG2—C9	120.8 (2)
C9—C10—C11	117.2 (3)	C12—CG2—C9	179.5 (2)
O3—C11—C12	124.2 (3)	C14—CG2—C9	61.0 (2)
O3—C11—C10	114.6 (3)	C13—CG2—C9	120.0 (2)
C12—C11—C10	121.2 (4)	C11—CG2—C10	61.1 (2)

supplementary materials

Symmetry codes: (i) -x, -y+2, -z.

C11—C12—C13	120.6 (4)		C12—CG2—C10		120.4 (2)
С11—С12—Н12	119.7		C14—CG2—C10		120.6 (2)
C13—C12—H12	119.7		C13—CG2—C10		179.6 (3)
C14—C13—C12	120.1 (4)		C9—CG2—C10		59.7 (2)
Symmetry codes: (i) $-x$, $-y+2$, $-y$	-z; (ii) $-x, -y+1, -z.$				
Hydrogen-bond geometry (Å	. °)				
D—H··· A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C15—H15B…O1 ⁱ		0.96	2.53	3.290 (6)	136

